
TUGboat, Volume 35 (2014), No. 2 179

Typesetting figures for computer science

Andrew Mertz, William Slough and
Nancy Van Cleave

Abstract

Presentation of concepts from computer science can
benefit from informative diagrams and figures. These
include trees, graphs, logic circuits, stacks and stack
frames, algorithms expressed with pseudocode, code
listings and memory layout, for example. Producing
these types of diagrams can sometimes be challenging.
Fortunately, there are a number of LATEX packages
that can be used for this purpose. In this paper, we
will illustrate the use of a few packages — including
tikz, bytefield, forest, drawstack, and listings — that
are well-suited for constructing high-quality figures
for computer science.

1 Introduction

Popular wisdom dictates that a picture is worth a
thousand words. Illustrations can be an indispensable
aid to understanding new concepts, and never more
so than in the classroom. The types of figures we
most often use in our computer science courses fall
mainly into one of four categories:

• systems: logic circuits, instruction set details,
and stack frames

• algorithms/data structures: pseudocode, graphs,
binary trees, and search trees

• theory of computation: automata, grammars,
and parse trees

• discrete mathematics: graphs and trees

In all courses, there is a need for clearly presenting
algorithms and code.

There are two approaches one can take: either
generate a graphic with some third-party software,
export it in an appropriate format and subsequently
include it in the LATEX source with the graphicx
package [1], or generate the graphic with one of the
“friends” of TEX, such as METAPOST [6] or TikZ [16].
Where practical, we prefer the latter approach, since
the results blend well with the surrounding typeset
text and produce vector graphics, contributing to
their quality. This quality derives from the fact that
images generated in this manner use the same fonts
as the typeset text and can utilize mathematical
typesetting as needed.

Additionally, there are a number of packages
designed for special purposes — such as typesetting
trees, stacks, and graphs, to name a few. Some of
the more recent packages on CTAN make use of TikZ,

adding a syntax layer to make them easier to use
while preserving excellent typeset results.

The number of packages available from CTAN

can be somewhat overwhelming to a LATEX user with
a specific task in mind. In a recent search, we found
35 packages for the topic tree. How does one choose
from this embarrassment of riches? While references
such as [4] and [10] certainly provide useful guidance
they are snapshots in time, so a number of packages
do not appear there.

Our purpose here is to provide examples of a
number of typesetting tasks that are of interest to
computer scientists. For each such task, we have
identified packages we feel are especially appropriate.
Although we are not providing tutorial introductions
to these packages, we hope these examples may in-
troduce readers to a few unfamiliar packages and
provide motivation for further exploration.

2 Typesetting code

We often have a need to typeset code in a specific
programming language, such as Python or Java. For
such situations, we recommend the use of the listings
package [5].

The listings package, introduced in 1996, is rela-
tively mature and still enjoys current support. While
perhaps best-known for its ability to produce “pretty-
printed” output, verbatim-like results can also be
produced. It provides support for more than 100 pro-
gramming languages and dialects, including (LA)TEX,
with the ability to define styles for yet others.

It is easy to get started with this package, know-
ing just two commands and one environment:

\lstset

\lstinputlisting

{lstlisting}

Appearance of typeset code is controlled with
\lstset, which provides options for languages, colors,
font sizes and styles, line numbering, and a host of
other possibilities. Desired options are specified using
a comma-separated list of key/value pairs, as follows:

\lstset{key1=value1,...}

An example of this is shown in Figure 1, where
a number of such options are specified: language,
showstringspaces, columns, etc. To typeset code,
we can use either \lstinputlisting or lstlisting,
the difference being where the code to be typeset is
located. The command

\lstinputlisting{filename}

typesets the contents of the file filename, using the
options previously requested. In contrast, code ap-
pears directly within an lstlisting environment:

Typesetting figures for computer science



180 TUGboat, Volume 35 (2014), No. 2

1 def gcd(p, q):
2 ”””
3 Computes the greatest common divisor of
4 two nonnegative integers p and q using
5 Euclid’s method.
6 ”””
7 if (q == 0):
8 return p
9 else:

10 remainder = p % q
11 return gcd(q, remainder)

\lstset{language = Python,

showstringspaces = false,

columns = fullflexible,

numbers = left,

numberstyle = \tiny,

frame = single}

\lstinputlisting{gcd.py}

Figure 1: Typeset Python code using the listings package, producing pretty-printed output.

1 def gcd(p, q):

2 """

3 Computes the greatest common divisor of

4 two nonnegative integers p and q using

5 Euclid’s method.

6 """

7 if (q == 0):

8 return p

9 else:

10 remainder = p % q

11 return gcd(q, remainder)

\lstset{basicstyle = \ttfamily,

columns = fullflexible,

keepspaces = true,

numbers = left,

numberstyle = \tiny,

frame = single}

\lstinputlisting{gcd.py}

Figure 2: Typeset “anonymous” code with the listings package, producing verbatim-like output.

\begin{lstlisting}

code to typeset

\end{lstlisting}

Revisiting Figure 1, we see how Euclid’s algorithm
for computing the greatest common divisor, as im-
plemented in Python and stored in the file named
gcd.py, can be typeset.

Most of the options specified here are evident
from the typeset result: a single frame enclosing the
code, tiny line numbers on the left, etc. Two of
these options, however, are perhaps less obvious —
showstringspaces and columns. Setting the first
of these to false prevents the visible space ( ) from
appearing within any of the strings in the code. To
understand the columns setting, it helps to know
that there are two broad categories possible: fixed
and flexible. A fixed column format adjusts the
space between letters in an attempt to align columns;
a flexible format makes no such attempt. Of the
flexible formats available, we prefer fullflexible.

As a second example of the listings package, refer
to Figure 2. Here, we did not specify a language, so
no keywords are highlighted. To obtain a verbatim-
like appearance, basicstyle is set to a monospace

font. Setting the keepspaces option causes spaces
which appear in the code to be respected which, in
turn, preserves column alignment and indenting.

The listings package has many other options and
advanced capabilities. For example, it is possible to
include TEX markup within a listing by providing
“escaped” code, making it possible to blend mathe-
matical comments with code.

3 Typesetting algorithms

To display algorithms in pseudocode, we think the
style exhibited in [3] (famously known as CLRS, after
the authors’ initials) is quite attractive, recognizing
that its use requires some markup effort. For this,
the clrscode3e package [2] can be used. An older
version, clrscode, is also available; the 3e version
matches the style used by the 3rd edition of CLRS.

Presenting an algorithm in this style is done
using a codebox environment, as follows:

\usepackage{clrscode3e}

...

\begin{codebox}

algorithm, with markup

\end{codebox}

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 181

\Procname{$\proc{Euclid-gcd}(p, q)$}

\zi \Comment Pre: $p$ and $q$ are two nonnegative integers.

\zi \Comment Post: $\proc{Euclid-gcd}(p, q) = \func{gcd}(p, q)$.

\li \If $q \isequal 0$

\li \Then

\Return $p$

\li \Else

$\id{remainder} \gets p \bmod q$

\li \Return $\proc{Euclid-gcd}(q, \id{remainder})$

\End

Figure 3: Typesetting an algorithm with clrscode3e.

Euclid-gcd(p, q)

// Pre: p and q are two nonnegative integers.
// Post: Euclid-gcd(p, q) = gcd(p, q).

1 if q == 0
2 return p
3 else remainder = p mod q
4 return Euclid-gcd(q, remainder)

Figure 4: An algorithm presented with clrscode3e.

Figure 3 shows sample markup for presenting an
algorithm with this package; the typeset result is
in Figure 4. A few remarks will clarify some of
the markup details being used here. Consult the
documentation provided with this package for more
complete information.

Euclid-gcd is the name of this algorithm, so it
is being identified as such with the \proc (procedure)
macro. In a similar way, remainder is an identifier
indicated by \id. Each of \li and \zi commands
cause new lines to begin, either numbered or not.
The package also supplies miscellaneous commands
such as \gets and \isequal which produce assign-
ment and equality operators. Commands for control
structures, such as the conditional shown here, mirror
those found in modern programming languages.

4 Logic circuits

Circuits consisting of and, or, not, and nand gates are
discussed in our systems course and also play a minor
role in one of our general education mathematics
courses. We have recently been looking at ways to
produce diagrams of these types of circuits.

TikZ provides support for logic circuits and pro-
duces nice results. In this context, a circuit consists
of a number of nodes and a collection of interconnec-
tions. The placement of the nodes can be specified
either in absolute or relative coordinates. Using rel-
ative coordinates is handy, as circuits often consist

\tikzstyle{dot}=[fill,

shape = circle,

minimum size = 4pt,

inner sep = 0pt,

text height = 0pt,

text depth = 0pt]

\tikzstyle{twoAnd}=[draw,

and gate US,

logic gate inputs=nn]

\tikzstyle{threeOr}=[draw,

or gate US,

logic gate inputs=nnn,

anchor = input 2]

Figure 5: Some preliminary definitions for the
majority circuit.

of components arranged either horizontally or ver-
tically. Since the interconnections can be specified
symbolically (e.g., “the output of the first and gate
is connected to the first input of the or gate”), it is
easy to stretch or compress the final drawing with
just a minor change.

To illustrate, we will dissect some of the code
details required to draw a circuit which computes
a 3-input majority function. In the discussion that
follows, refer to Figures 5 and 6. Since we want to use
the U.S.-style gates found in the circuits library
of TikZ, the following is needed in the preamble:

\usepackage{tikz}

\usetikzlibrary{circuits.logic.US}

In order to streamline some of the code for the
circuit, Figure 5 introduces style names for each type
of gate which will appear: a two-input and, and a
three-input or. The specification

logic gate inputs = nn

Typesetting figures for computer science



182 TUGboat, Volume 35 (2014), No. 2

x y z

f(x, y, z)

\begin{tikzpicture}[x = 1cm, y = 1cm, text height = 1.5ex, text depth = 0.25ex]

% Circuit has 3 inputs

\node (x) at (0, 0) {$x$};

\node (y) at (1, 0) {$y$};

\node (z) at (2, 0) {$z$};

% First column of AND gates

\node[twoAnd] at ($(z) + (1, -1)$) (And1) {};

\node[twoAnd] at ($(z) + (1, -2)$) (And2) {};

\node[twoAnd] at ($(z) + (1, -3)$) (And3) {};

% Connect inputs to the AND gates

\draw (x) |- node[dot]{} (And1.input 1);

\draw (y) |- node[dot]{} (And1.input 2);

\draw (x) |- (And2.input 1);

\draw (z) |- node[dot]{} (And2.input 2);

\draw (y) |- (And3.input 1);

\draw (z) |- (And3.input 2);

% 3-input OR gate

\node[threeOr] at ($(And2.output) + (1, 0)$) (Or1) {};

% Connect AND output to OR inputs

\draw (And1.output) -- ++(0.5, 0) |- (Or1.input 1);

\draw (And2.output) -- (Or1.input 2);

\draw (And3.output) -- ++(0.5, 0) |- (Or1.input 3);

% Draw and label final output

\draw (Or1.output) -- ++(2, 0) node[above left] {$f(x, y, z)$};

\end{tikzpicture}

Figure 6: A logic circuit which computes the majority function: f(x, y, z) = true
if two or more of its inputs are true; otherwise it is false.

indicates a two-input gate in which each input is
“normal”; i.e., not inverted. The node style named
dot will be used to produce a small, filled circle to
indicate an electrical connection.

Moving on to Figure 6, let’s examine how this
circuit is specified. The tikzpicture environment
specifies x and y units of 1 cm each, which could eas-
ily be adjusted to obtain a stretched or compressed
variant. The text height and depth which appears is

present to ensure that the three inputs, x, y, and z
are typeset on the same baseline.

Within the body of the environment, the com-
ments provide some guideposts for understanding
how the circuit is drawn. A few additional remarks
may be helpful. Inputs x, y, and z are placed at
absolute coordinates, spaced one centimeter apart
horizontally. The three and gates are placed relative
to the z input: “over 1, down 1”, “over 1, down 2”,

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 183

...

Saved R1 −1

R6 (Stack Pointer)

Saved R0 0

R5 (Frame Pointer)

Previous Frame Pointer +1

Return Address +2

n +3

FACT(n)

...

\begin{drawstack}

\startframe

\tikzset{>={Stealth[width = 2mm,

length = 3mm]}}

\cell{Saved \texttt{R1}}

\cellcom{$-1$}

\cellptr{\texttt{R6} (Stack Pointer)}

\cell{Saved \texttt{R0}}

\cellcom{$\phantom{+}0$}

\cellptr{\texttt{R5} (Frame Pointer)}

\cell{Previous Frame Pointer}

\cellcom{$+1$}

\cell{Return Address}

\cellcom{$+2$}

\cell{$n$}

\cellcom{$+3$}

\finishframe{FACT($n$)}

\end{drawstack}

Figure 7: A simple stack frame produced by the drawstack package.

and “over 1, down 3”. The or gate is placed in a
similar way.

The interconnections are simply vertical and
horizontal line segments, specified with the -- and
|- line drawing capabilities of TikZ: a single line
segment is produced by --, whereas |- draws an
ell-shape consisting of a vertical segment followed by
a horizontal one.

To illustrate specific input values, we could use
a draw option to easily add colors (e.g., red for false,
blue for true) to this circuit. For example, replacing
the \draw commands with \draw[red] will change
the color of the lines and dots.

5 Stacks and stack frames

To understand function calls at the machine-language
level, visualization of stacks and stack frames within
memory is key. The package drawstack [11] provides
a means to illustrate memory with annotations and
explicit links. Refer to Figure 7 for an example of a
simple stack frame.

This package provides the drawstack environ-
ment. Each frame is enclosed within a pair of com-
mands: \startframe and \finishframe. The argu-
ment provided to \finishframe specifies the brace
label. The brace itself groups all of the cells within
a given frame. In this first example, just one frame
appears, but any number of frames may be produced.

Each component of a frame consists of a cell,
an optional comment, and an optional cell pointer.
The comment and pointer appear to the cell’s right.
Cell comments are useful for memory addresses or
offsets, for example. In this example, we are using

\tikzset to specify an arrowhead of a customized
size. Other features of TikZ can be used to add
additional arrows, change colors, and so on. Figure 8
provides a glimpse of the possibilities.

6 Displaying fields of bits

In computer systems courses students are introduced
to machine language instructions, written in binary.
These instructions are subdivided into fields of bits
and given mnemonic names. Similarly, memory
maps, network protocols, and file formats all con-
sist of fields of data. The package bytefield [12] can
be used to show these layouts, and provides a wide
variety of options to do so.

The bytefield environment may be used to
create diagrams similar in format to Figure 9. The
argument, 13 in this case, specifies the width of the
figure in bits. The bitwidth option controls the
amount of horizontal space given to each bit. Within
this environment, \bitbox is used to add a field one
or more bits wide in a single row. The command
\wordbox adds a field that fills one or more rows deep.
Double slashes are used to end a row in a bytefield

diagram, much like a tabular environment.
Figure 10 illustrates how bytefield can be used to

format a machine instruction; in this example, from a
hypothetical computer called LC-3 [13]. The indices
are added with \bitheader, while the endianness

option reverses the order of the indexing.
Groups can be used to add labels that span mul-

tiple rows, and can be placed on the left or the right
of the diagram. Groups do not have to nest prop-
erly, unlike most environments. Use the leftcurly

Typesetting figures for computer science



184 TUGboat, Volume 35 (2014), No. 2

...

Saved R1 x5ff1 (-1)

R6 (Stack Pointer)

Saved R0 x5ff2 (+0)

R5 (Frame Pointer)

PFP = x5ff7 x5ff3 (+1)

Return Address = x305E x5ff4 (+2)

N = 2 x5ff5 (+3)

FACT(2)

Saved R1 x5ff6 (-1)

Saved R0 x5ff7 (+0)

PFP = x5ffc x5ff8 (+1)

Return Address = x305E x5ff9 (+2)

N = 3 x5ffa (+3)

FACT(3)

Saved R1 x5ffb (-1)

Saved R0 x5ffc (+0)

PFP = x0000 x5ffd (+1)

Return Address = x3011 x5ffe (+2)

N = 4 x5fff (+3)

FACT(4)

...

Figure 8: Linked stack frames corresponding to a
recursive computation of FACT(4).

\begin{bytefield}[bitwidth = 1.5em]{13}

\bitbox{1}{bit}

\bitbox{4}{nybble}

\bitbox{8}{byte}\\

\wordbox{1}{one row}\\

\wordbox{2}{two rows with

additional text so that it will

wrap around}

\end{bytefield}

bit nybble byte

one row

two rows with additional text so that it will
wrap around

Figure 9: An example of basic bytefield commands,
and its output.

\begin{bytefield}[bitwidth = 1.2em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\begin{leftwordgroup}{ADD}

\bitbox{4}{0001}

\bitbox{3}{DR}

\bitbox{3}{SR1}

\bitbox{1}{0}

\bitbox{2}{00}

\bitbox{3}{SR2}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0001 DR SR1 0 00 SR2ADD

Figure 10: Formatting a machine instruction
using bytefield.

option to set the type of brace used to highlight the
group. In the case of Figure 10, no brace was used.

When indices are shown it might be preferable
to have each bit centered under its index. The
\bitboxes command accomplishes this, as shown
in Figure 11. The first argument to bitboxes spec-
ifies the number of “symbols” to place at each bit
location. To remove the internal lines within a field,
use \bitboxes*.

By default, bytefield vertically centers bit and
word boxes without respecting the baseline of their
contents. The bytefield documentation gives a tech-
nique for adjusting this, as shown in Figure 11, by us-
ing a \raisebox command within \bytefieldsetup

to initialize boxformatting.
Extra space can be added between rows, similar

to a tabular environment. The bytefield documen-
tation also gives a technique for filling a bitbox to
gray it out. However, it is not compatible with the
technique given for aligning text on the baseline, so
the box formatting needs to be reset, as also shown
in Figure 12.

7 Automata

Central to the theory of computation is the concept
of various types of automata, such as finite-state
machines, pushdown machines, and Turing machines.
These abstract computing devices are typically pre-
sented as directed graphs with labeled edges. These
kinds of diagrams are good for understanding the
static aspect of these machines.

How might we gain further appreciation of the
dynamic aspect of automata — that is, the nature of
how these machines process input strings? One way
is to utilize a program like JFLAP [14], a Java-based

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 185

\newlength{\maxheight}

\setlength{\maxheight}{\heightof{W}}

\newcommand{\baselinealign}[1][\maxheight]

{\centering\raisebox{0pt}[#1][0pt]}

\begin{bytefield}[bitwidth = 1.2em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\bytefieldsetup{boxformatting=

\baselinealign}%

\begin{leftwordgroup}{BR}

\bitboxes{1}{0000}

\bitboxes*{1}{nzp}

\bitbox{9}{PCoffset9}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0 0 0 0 n z p PCoffset9BR

Figure 11: Baseline alignment of bit boxes.

\begin{bytefield}[bitwidth = 1.5em,

leftcurly = .]{16}

\bitheader[endianness = big]{0-15}\\

\bytefieldsetup{boxformatting=

\baselinealign}%

\begin{leftwordgroup}{BR}

\bitboxes*{1}{0000}

\bitboxes*{1}{nzp}

\bitbox{9}{PCoffset9}

\end{leftwordgroup}\\[1ex]

\bytefieldsetup{boxformatting=

{\centering}}

\begin{leftwordgroup}{RSV}

\bitboxes*{1}{1101}

\bitbox{12}{\color{lightgray}

\rule{\width}{\height}}

\end{leftwordgroup}

\end{bytefield}

0123456789101112131415

0 0 0 0 n z p PCoffset9BR

1 1 0 1RSV

Figure 12: Adding space between two machine
instructions and filling a bitbox with color.

formal language and automata package now often
used in computer science education.

Using JFLAP, we can build automata using a
convenient GUI interface, then explore their behavior
on various input strings. In addition, we can ex-
periment with constructions used in proofs, such as
constructing an equivalent deterministic automaton
given a non-deterministic one.

What options exist for incorporating a JFLAP-
based automaton in a LATEX document? At present,
the software exports in JPG, PNG, GIF, BMP and
SVG formats. Unfortunately, these are less than
ideal, as Figure 13 shows: fonts do not match those
used in the document, “true” subscripts are not used,
color may not be desired, and it is difficult to achieve
accurate placement of the circular nodes, since JFLAP

does not use a “snap to” grid for node layout.
Since TikZ has a library for drawing automata,

we can imagine an export option from JFLAP which
produces appropriate TikZ code which could then be
included in a LATEX document. Such an option would
be a vector-based format and allow for TEX-based
markup, thereby eliminating most of the undesirable
effects of using one of the bitmap formats now avail-
able. The possibility of inaccurately placed nodes
would continue to be a problem.

Although not directly incorporated into the
JFLAP software, the script jflap2tikz [8] achieves the
goal of presenting automata created with JFLAP us-
ing TikZ-based graphics. The TikZ code output by
jflap2tikz for our example automaton is shown in Fig-
ure 14, and Figure 15 shows the resulting processed
output. The TikZ code produced by jflap2tikz is
human-readable and thus can be further edited, if
desired. The script allows for a “snap to” style grid
which can improve alignment of the nodes. A large
grid spacing corresponds to a coarser grid. Figure 16
shows the result of using such a grid on the example
finite-state machine.

Figure 13: An example finite-state machine excerpted
from [15], as exported by JFLAP using PNG format.

Typesetting figures for computer science



186 TUGboat, Volume 35 (2014), No. 2

\begin{tikzpicture}[>={Stealth[width = 6pt, length = 9pt]},

accepting/.style = {double distance = 2pt,

outer sep = 1pt + \pgflinewidth},

shorten >= 1pt,

auto]

\draw (62pt, -114pt) node[state, initial, initial text =](0){$q_{0}$};

\draw (163pt, -51pt) node[state](1){$q_{1}$};

\draw (184pt, -162pt) node[state](2){$q_{2}$};

\draw (275pt, -92pt) node[state, accepting](3){$q_{3}$};

\path[->] (0) edge[bend left] node{b}(2);

\path[->] (2) edge[bend left] node{a}(0);

\path[->] (1) edge node{a}(2);

\path[->] (0) edge node{$\lambda$}(1);

\path[->] (1) edge node{a}(3);

\end{tikzpicture}

Figure 14: Result of processing the source file for Figure 13 with the jflap2tikz script (slightly edited for space).

q0

q1

q2

q3

b

a

a

λ
a

Figure 15: The finite-state machine from Figure 13,
converted into TikZ and then processed as usual.

q0 q1

q2

q3

b

a

a

λ a

Figure 16: The finite-state machine from Figure 13,
converted with a grid spacing of 100.

8 Trees

Forests and trees appear in a wide variety of forms
in many areas of computer science. Drawing trees
with GUI-style graphics software can be awkward
and may yield imperfect results. Fortunately, there
are a number of TEX-based approaches. One of these

involves the use of the forest package [17], which
produces excellent results.

This package provides the forest environment,
wherein a tree can be defined using bracket nota-
tion, a well-known syntax among linguists which
captures the recursive nature of a tree. In this no-
tation, a tree with a single root node r is repre-
sented by [r]. If a tree has more than a single node,
then it has a root node r and n nonempty subtrees
T1, T2, . . . , Tn. The bracket representation for this
tree is [r br(T1) br(T2) . . . br(Tn)], where br(T ) is the
bracket representation of tree T .

Figure 17 illustrates how this package can be
used to draw a tree. In this example, 6 is the root
with two subtrees, T1 and T2, so the bracket notation
for this tree is of the form [6 br(T1) br(T2)]. Using
this same pattern to expand br(T1) and br(T2), we
eventually obtain the bracketed form shown in the
figure. Notice that spaces and newlines can be in-
troduced to assist with readability and to help make
clear the structure of the tree.

Another common structure in computer science
is the binary tree, in which every node has at most
two children, referred to as left and right children.
The tree depicted in Figure 17 is not a binary tree,
since it is not clear whether the leaf node 1 is a left
child or a right child.

Indicating whether a node is a left or right child
can be accomplished with the phantom option which
reserves space for a node, but doesn’t draw an edge
to it. Phantom nodes may occur anywhere in the
tree; when one is used at the root it produces a forest.
Figure 18 shows two phantom nodes, one as the left
child of 8, the other as the right child of 7.

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 187

6

14

8

2 4

7

1

10

9 3

\begin{forest}

[6

[14

[8 [2] [4]]

[7 [1]]

]

[10 [9] [3]]

]

\end{forest}

Figure 17: A tree produced by the forest package.

6

14

8

4

7

1

10

9 3

\begin{forest}

[6

[14

[8 [,phantom] [4]]

[7 [1] [,phantom]]

]

[10 [9] [3]]

]

\end{forest}

Figure 18: Use of phantom to force node alignment.

Trees are commonly drawn with circular nodes.
This, too, is possible with the forest package since
it is built upon TikZ. Thus, options from TikZ can
be used to alter the result, and can be applied to
individual nodes, a subtree, or the entire tree. To
add circles to the tree of Figure 18, a first attempt
would be to apply this option to the entire tree:

for tree = {draw, circle}

This would draw a circle at each node of the tree, but
the size of each circle would depend on the dimensions
of the text at each node — giving circles of varying
sizes.

Specifying an appropriate minimum circle size,
as shown in Figure 19, solves that problem, producing
a tree with a uniform appearance.

It is also useful to be aware of the fit option.
Figure 20 shows the same binary search tree format-
ted in two ways. On the left is the default result,
also known as the tight fit, whereas the tree on the
right shows the result with the band fit. Compact
trees might be nice in many situations, but the wider
tree on the right is the one typically encountered for
search trees.

A red-black tree [3] is another type of binary tree,
where the color of each node is important. Figure 21
displays a red-black tree. The text has been set to
white, and the default color for nodes is black. The
red nodes have the default color overridden with the
option fill = red (printed in gray for this article).

6

14

8

2 4

7

1

10

9 3

\begin{forest}

for tree = {draw, circle,

node options = {minimum width = 5ex}}

[6

[14

[8 [2] [4]]

[7 [1] [,phantom]]

]

[10 [9] [3]]

]

\end{forest}

Figure 19: Uniform node size obtained by setting a
minimum node width.

S

E

A

C

R

H

T

S

E

A

C

R

H

T

Figure 20: Compact tree on left (fit = tight);
wider on right (fit = band).

9 Grammars and parse trees

Before looking at an example of a parse tree, we take
a short detour into grammars. A context-free gram-
mar is a formal system which describes a language
as a set of rules.

The syntax-mdw package [18] may be used to
typeset the syntax rules for a given language. A
grammar environment is used, and produces nicely
formatted output, as demonstrated in Figure 22.
The \alt command is used to specify alternative
rules, and when typeset produces the | symbol, pro-
nounced “or”. Setting the value of \grammarindent
determines the amount to indent each of the alter-
natives in the grammar definition.

Typesetting figures for computer science



188 TUGboat, Volume 35 (2014), No. 2

51

21

19

13

40

24

88

72

61 86

96

90

for tree = {fit = band, circle, draw,

fill = black, text = white,

edge = {black, very thick}}

[51

[21

[19 [13, fill = red] [,phantom]]

[40 [24, fill = red] [,phantom]]

]

[88

[72, fill = red [61][86]]

[96 [90, fill = red] [,phantom]]

]

]

Figure 21: An example of a red-black tree.

〈expr〉 ::= 〈expr〉 ‘+’ 〈expr〉
| 〈expr〉 ‘-’ 〈expr〉
| 〈expr〉 ‘*’ 〈expr〉
| 〈expr〉 ‘/’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| ‘-’〈expr〉
| ‘id’

\setlength{\grammarindent}{5em}

\begin{grammar}

<expr> ::= <expr> ‘+’ <expr>

\alt <expr> ‘-’ <expr>

\alt <expr> ‘*’ <expr>

\alt <expr> ‘/’ <expr>

\alt ‘(’ <expr> ‘)’

\alt ‘-’<expr>

\alt ‘id’

\end{grammar}

Figure 22: The syntax rules of a simple grammar.

A parse tree represents the syntactic structure
of a string according to some context-free grammar.
Given the grammar in Figure 22, a parse tree can be
used to represent an expression such as (a + b) ∗ c as
shown in Figure 23.

〈expr〉

〈expr〉

( 〈expr〉

〈expr〉

id

+ 〈expr〉

id

)

* 〈expr〉

id

% Expression: (a+b)*c

\newcommand{\E}{$\langle expr \rangle$}

\newcommand{\id}{\texttt{id}}

\newcommand{\plus}{\texttt{+}}

\newcommand{\mult}{\texttt{*}}

\newcommand{\lpar}{\texttt{(}}

\newcommand{\rpar}{\texttt{)}}

\begin{forest}

[\E

[\E

[\lpar]

[\E

[\E [\id]] [\plus] [\E [\id]]

]

[\rpar]

]

[\mult]

[\E [\id]]

]

\end{forest}

Figure 23: A parse tree for the expression (a + b) ∗ c,
using the grammar from Figure 22.

10 Combinatorial graphs

In graph theory and similar courses, combinatorial
graphs must be produced in great numbers. The
package tkz-graph [7] provides a variety of styles
and macros for creating high-quality representations
of graphs. The documentation is available only in
French, but is so abundantly illustrated with well-
done examples that it is accessible to those with little
or even no knowledge of French.

Figure 24 displays several of the options avail-
able when drawing graphs. To select the vertex style
(from a list of ten possibilities, for example Simple,
Classic, or Shade), set vstyle to your choice using
the \GraphInit command.

\SetUpVertex can be used to set such options as
the position of the label relative to the node (Lpos),
the distance of the label from the node (Ldist), and
whether the label is outside of the node (LabelOut).

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 189

\begin{tikzpicture}

% Select vertex style

\GraphInit[vstyle = Classic]

% Indicate vertex color

\SetUpVertex[FillColor = gray!30]

% Set vertex size relative to label

\renewcommand*{\VertexInnerSep}{3pt}

% Position of vertex labels

\SetVertexLabelIn

% Establish Line width

\tikzset{EdgeStyle/.append style =

{line width = 2pt}}

% --- tkz-graph commands here ---

\end{tikzpicture}

Figure 24: Details of initializing values for a graph.

Alternately, macros such as \VertexInnerSep can be
redefined. Also, several macros are provided to mod-
ify default options, for example, \SetVertexLabelIn.
And finally, \tikzset can be used to modify both
the vertex and edge styles.

Figure 25 illustrates the format of a simple graph
using relative positioning to place the vertices. Ver-
tex A is established, then all the other vertices are
relative to A or the position of another vertex. It is of
interest to note that the distance given to combined
directions such as \SOEA, is applied in both directions.
Thus \SOEA[unit = 1](A){C} results in vertex C

being one unit south and one unit east of vertex A.
Recall that this code resides in the tikzpicture

environment following the code given in Figure 24.
Hence, native TikZ commands such as

\draw[help lines](0, 0) grid (4, -4);

can be issued here.
An alternative way to place the vertices can be

seen in Figure 26. Here the vertices are placed using
absolute coordinates, and all edges can be included
in the single Edges macro.

By utilizing \tikzset, it is possible to design a
new vertex style, as shown in Figure 27. Here the
shape, size, and color have been redefined.

It is also possible to modify the vertex style
within the \SetVertexSimple macro, as shown in
Figure 28, where the shape, fill color, size and line
have all been specified.

As Figure 29 shows, creating directed edges is
as simple as setting the edge style. To improve the
default arrowheads, \tikzset is used to select the
Stealth shape, with the width and height enlarged

A B

HG

C D

FE

% Two nested squares of vertices

\Vertex{A} \EA[unit = 4](A){B}

\SO [unit = 4](B){H} \WE[unit = 4](H){G}

\SOEA[unit = 1](A){C} \EA[unit = 2](C){D}

\SO [unit = 2](D){F} \WE[unit = 2](F){E}

% Outer square

\Edge(A)(B) \Edge(B)(H)

\Edge(H)(G) \Edge(G)(A)

% Inner square

\Edge(C)(D) \Edge(D)(F)

\Edge(F)(E) \Edge(E)(C)

% Connect the squares

\Edge(A)(C) \Edge(B)(D)

\Edge(H)(F) \Edge(G)(E)

% Cause a grid to appear

\draw[help lines] (0, 0) grid (4, -4);

Figure 25: A simple graph using relative positioning.

% Two nested squares of vertices

\Vertex[x = 0, y = 4]{A}

\Vertex[x = 0, y = 0]{G}

\Vertex[x = 1, y = 3]{C}

\Vertex[x = 1, y = 1]{E}

\Vertex[x = 3, y = 3]{D}

\Vertex[x = 3, y = 1]{F}

\Vertex[x = 4, y = 4]{B}

\Vertex[x = 4, y = 0]{H}

% All edges

\Edges(A, B, H, G, A, C, D, F,

E, C, E, G, H, F, D, B)

Figure 26: The same graph as Figure 25 using
absolute placement of vertices.

to improve visibility. Since the edges are now di-
rected, the order of vertices when creating edges
becomes important.

Simple changes can affect the appearance of a
graph. For example, changing the vertex style to
Shade produces a sophisticated-looking graph as seen
in Figure 30.

Typesetting figures for computer science



190 TUGboat, Volume 35 (2014), No. 2

\begin{tikzpicture}

\SetVertexSimple

\tikzset{VertexStyle/.style = {

shape = rectangle,

fill = gray,

inner sep = 0pt,

outer sep = 0pt,

minimum size = 10pt}}

\Vertex{A} \EA(A){B}

\Edge(A)(B)

\end{tikzpicture}

Figure 27: Designing your own vertex style, version 1.

\begin{tikzpicture}[rotate = 18]

\SetVertexSimple[Shape = diamond,

FillColor = gray!25,

MinSize = 12pt,

LineWidth = 4pt,

LineColor = black!75]

\tikzset{VertexStyle/.append style = {

inner sep = 0pt,

outer sep = 2pt}}

\Vertices{circle}{A, B, C, D, E}

\Edges(A, B, C, D, E, A, C, E, B, D)

\end{tikzpicture}

Figure 28: Designing your own vertex style, version 2.

Figure 31 represents a flow network, with an
augmenting path (of flow 4) highlighted. The source
and sink nodes have been emphasized with different
colors, and the augmenting path edges are wider than
other edges and also of a different color. Observe
that an edge may be curved using the bend right

or bend left option when setting the edge style.
Additional examples from the tkz-graph package can
be seen in [9].

A B

HG

C D

FE

% Set arrow type and size

\tikzset{>={Stealth[width = 3mm,

length = 4mm]}}

% Set edge to arrow

\tikzset{EdgeStyle/.append style =

{->,line width = 1.5pt}}

% Nested squares of vertices as before

% Outer square - clockwise

\Edges(A, B, H, G, A)

% Inner square - counterclockwise

\Edges(C, E, F, D, C)

% Connect the corners

\Edge(A)(C)

\Edge(D)(B)

\Edge(H)(F)

\Edge(E)(G)

Figure 29: Example of a directed graph.

A B

HG

C D

FE

% Simple changes:

\GraphInit[vstyle = Shade]

\SetGraphShadeColor

{gray!25} % ball

{black} % edge outline

{gray!25} % inner edge

% vertices and edges as before

Figure 30: A change in vertex style.
(Partial LATEX code)

Andrew Mertz, William Slough and Nancy Van Cleave



TUGboat, Volume 35 (2014), No. 2 191

v1

v2

v3

v4

s t

16

12

9

14

413

7

20

10 4

% Change vertex attributes

\SetUpVertex[FillColor = gray!50,

InnerSep = 5pt]

% Change edge attributes

\tikzset{LabelStyle/.style =

{shape = circle, inner sep = 2pt}}

\Edge[color = gray!80,

lw = 5pt, label = 16](s)(v1)

% Add curve to edges

\tikzset{EdgeStyle/.append style =

{bend right = 15}}

\Edge[lw = 2pt, label = 10](v1)(v2)

Figure 31: A sample flow network with changing
attributes.

11 Summary

As educators in the field of computer science, we find
ourselves challenged to produce a wide variety of
figures and diagrams. Being able to replicate (or in
some cases, exceed) the quality found in textbook pre-
sentations is a practical and intrinsically rewarding
skill. Fortunately, the TEX community has provided
a wealth of resources which can be brought to bear
on this problem. We hope that the examples and
explanations provided in this paper will encourage
others to explore these and other packages further.

References

[1] David Carlisle. Guide to graphics in LATEX.
http://ctan.org/pkg/graphicx.

[2] Thomas Cormen. The clrscode3e package:
Typesets pseudocode as in Introduction to
Algorithms. http://ctan.org/pkg/clrscode3e.

[3] Thomas Cormen, Charles Leiserson, Ronald
Rivest, and Clifford Stein. Introduction to
Algorithms, 3rd Edition. The MIT Press, 2009.

[4] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, and Denis Roegel. The LATEX Graphics
Companion, 2nd Edition. Addison-Wesley
Professional, 2007.

[5] Carsten Heinz, Brooks Moses, and Jobst
Hoffmann. The listings package: Typeset source
code listings using LATEX.
http://ctan.org/pkg/listings.

[6] John Hobby. MetaPost. http://tug.org/

metapost.

[7] Alain Matthes. The tkz-graph package: Draw
graph-theory graphs. http://ctan.org/pkg/

tkz-graph.

[8] Andrew Mertz and William Slough. The
jflap2tikz script: Convert JFLAP files to TikZ.
http://ctan.org/pkg/jflap2tikz.

[9] Andrew Mertz and William Slough. Graphics with
PGF and TikZ. TUGboat, 28(1):91–99, 2007. http:
//tug.org/TUGboat/tb28-1/tb88mertz.pdf.

[10] Frank Mittelbach, Michel Goossens, Johannes
Braams, and David Carlisle. The LATEX
Companion, 2nd Edition. Addison-Wesley
Professional, 2004.

[11] Matthieu Moy. The drawstack package:
Draw execution stacks.
http://ctan.org/pkg/drawstack.

[12] Scott Pakin. The bytefield package: Create
illustrations for network protocol specifications.
http://ctan.org/pkg/bytefield.

[13] Yale Patt and Sanjay Patel. Introduction to
Computing Systems: From bits & gates to C &
beyond. McGraw-Hill, 2003.

[14] Susan H. Rodger. JFLAP: Java Formal Languages
and Automata Package. http://www.jflap.org.

[15] Susan H. Rodger and Thomas W. Finley.
JFLAP: An Interactive Formal Languages and
Automata Package. Jones and Bartlett Learning,
2006.

[16] Till Tantau. The PGF package: Create
PostScript and PDF graphics in TEX.
http://ctan.org/pkg/pgf.

[17] Sas̆o Z̆ivanović. The forest package:
Drawing (linguistic) trees.
http://ctan.org/pkg/forest.

[18] Mark Wooding. The syntax-mdw package:
Typeset syntax descriptions.
http://ctan.org/pkg/syntax-mdw.

� Andrew Mertz, William Slough
and Nancy Van Cleave

Department of Mathematics and
Computer Science

Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu,

nkvancleave (at) eiu dot edu

Typesetting figures for computer science


