
MPlib: MetaPost as a reusable component

Taco Hoekwater, Hans Hagen
http://tug.org/metapost

Abstract

This short article introduces MPlib, a project that will be started in the autumn
of 2007. The goal of this project is to turn MetaPost into a modern, re-entrant
system library that can be used by many different applications programs at the
same time.

1 The MetaPost workflow

Probably the most common use of MetaPost today is
as a batch drawing program to create graphics that
are then included inside a pdfTEX document. It is
even quite normal for those graphics to be included
inside the TEX source, with the MetaPost input file
created on the fly by macro processing: for LATEX,
this functionality is provided by the packages emp,
feynmf, and mfpic; in ConTEXt, extensive in-line
MetaPost support is built into the core engine.) In
that case, MetaPost is often run on the fly by means
of Web2C’s \write18 TEX extension.

In figure 1 you will see a typical flowchart of
that process, and you will notice that it is a fairly
complex affair.

The left column is the process that is immedi-
ately visible to the user: you run pdfTEX on a .tex
file, and it generates a .pdf file.

The next column shows the execution of Meta-
Post, along with the required pre-processing (the
TEX macro package has to create a temporary input
file for MetaPost) and the post-processing (convert-
ing MetaPost’s output from EPS to PDF format).
In the figure, mptopdf is represented as a single pro-
gram for the sake of simplicity. Various solutions ex-
ist for this, and the most common one is based on a
set of TEX macros that ship with the ConTEXt distri-
bution. These macros can be executed via a stand-
alone program, or (most often) as a macro package
that is included by the main TEX document.

The whole right-hand side of the flowchart is
taken up by makempx, the program that handles
TEX-based labels inside images. The MetaPost exe-
cutable calls makempx automatically when it discov-
ers that there are TEX-based labels in the document.
makempx itself is just a dispatcher: it runs the sepa-
rate program mpto to extract those labels from the
MetaPost input file and place them in a TEX file,
then it runs TEX on that file, and finally it runs
dvitomp to convert the DVI file back into low-level
drawing routines that MetaPost understands.

.mp mpto .tex

MetaPost makempx TEX

.eps .mpx dvitomp .dvi

mptopdf

.pdf

.tex

TEX

.pdf

Figure 1: A typical workflow for MetaPost images
inside a PDF document.

In this workflow, there are half a dozen pro-
grams called and the same number of intermediate
files created.

2 Rationale

From looking at the workflow figure, it should be
clear that all of this is not very efficient. In partic-
ular, the whole makempx block is wasteful of system
resources, especially when MetaPost is executed on-
the-fly.

It would be much nicer if MetaPost behaved
like other system library components such as XML

parsers and OpenGL engines: just link your appli-
cation to the library, and there should be no more
need for all those intermediate files and external pro-
grams.

Unfortunately, updating the label handling and
creating system integration requires massive changes
to the source code as well as the build system, and
therefore it was very unlikely that this would ever
get done without extra incentives. A significant
amount of time and effort has to be invested to fix
those particular problems.

It was clear to us that, to get these tasks done
within a reasonable time frame, at least some of the

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 317



Taco Hoekwater, Hans Hagen

work would have to be done under an organized
project umbrella, and that is why we started the
MPlib project.

3 Goals

What we want is to convert MetaPost into a reusable
component library that is fully re-entrant and whose
functionality can be easily embedded into other pro-
grams. To reach this primary goal, MetaPost not
only has to be converted to a form suitable for li-
brary use, but also a set of new components needs
to be added: an indirection layer for input and out-
put, a configurable system for strategies regarding
error handling, and a re-engineered labeling system.

4 Implementation

Work will start in the autumn of this year, and it is
our current estimate that the project will be com-
plete by the summer of 2008. The actual program-
ming will be carried out by Taco. Hans Hagen will
lead the project, and Bogus law Jackowski will be in
charge of quality control.

The current version of MetaPost is a mix of
WEB (Pascal) and C code, that is compiled using
a complex build system based on the Web2C Pas-
cal converter. One of the implementation tasks for
MPlib is to convert MetaPost into a more main-
stream distribution package. For that, all of the
source code will be converted into C, using either
CWEB or NOWEB to retain the literate program-
ming quality of MetaPost.

Some parts of the internals of MetaPost will
be opened up and a documented application inter-
face will be offered. Besides a MetaPost-compatible
standalone executable based on MPlib, a Lua lan-
guage binding to the library will be provided. This
binding will allow the immediate use of MPlib within
LuaTEX, as well as function as an example for other
language bindings.

5 Acknowledgments

This project is supported by the worldwide TEX
User Groups. In particular, we want thank the fol-
lowing user groups that have already promised fi-
nancial and other support: DANTE e.V., TUGIndia,
TUG, NTG, CSTUG, and GUST.

318 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting


